MEHRAN UNIVERSITY OF ENGINEERING AND TECHNOLOGY, JAMSHORO DEPARTMENT OF BASIC SCIENCE AND RELATED STUDIES

Title of Subject	$:$ Linear Algebra, Differential Equations and Analytical Geometry	Code: MTH 103		
Discipline	$:$ ME/IN			
Semester	$: 2^{\text {nd }}$ semester			
Effective	$: 17$ Batch onwards			
Pre-requisites	$:$ Pre - Engineering			
Assessment	$: 20 \%$ sessional work	Mid-sem. Exam: 20%	End-Sem Exam: 60%	
Marks	$:$ TH: 100	PR: 00		
Credit Hours	$:$ TH: 03	PR: 00		
Min. Contact Hours	$:$ TH: 45	PR: 00		

Course Learning Outcomes
On completion of this course the students should be able to:

CLO	Description	Taxonomy Level	PLOs
1	Determine the basic operation of matrix algebra and solution of system of linear equations. Apply the concepts of two and three dimensional geometry.	C 2	1
2	Apply first and higher order and differential equations methods.	C 2	1
3	Analyze area and volume of bounded regions by using multiple integrals	C 3	1

Assessment Methods of CLOs of Subject name

CLOS	Sessional Tests and Assignments	Mid Exam	Final Exam	Learning Levels	PLOs
CLO 1	20%	70%	10%	C2	1
CLO 2	40%	30%	30%	C2	1
CLO 3	40%	------	60%	C3	1

Contents

Introductions to matrices and elementary row operations. Brief introduction of matrices. Types of matrices. Introduction to elementary row operations. Echelon and reduced echelon forms. Rank of a matrix. Inverse of a matrix using elementary row operations.
System of linear equations. System of non-homogeneous and homogeneous linear equations. Gaussian elimination method, Gauss Jordan method. Consistence criterion for solution of homogeneous and non-homogeneous system of linear equations. Application of system of linear equations.
Determinants. Introduction to determinants. Properties of determinants of order n. Rank of a matrix by using determinants.
Analytic geometry of 3-dimensions.Introduction; Coordinates in R3.
Line: Coordination of a point dividing a line segment in a given ratio. Straight line, in R^{3}. Vector form of a straight line, parametric equations of a straight line, equation of a straight line in symmetric form, direction ratios and direction cosines, angle between two straight lines; distance of a point from a line.
Plane: Equation of a plane, angle between two planes, intersection of two planes, a plane and a straight line; skew lines. Cylindrical and spherical coordinates.
Sphere: General equation of sphere.
Differential equations of first order: Ordinary differential equations and their classification, formation of differential equations, solution of differential equations; initial and boundary conditions. Methods of solution of differential equation of first order and first degree; geometrical and physical applications.
Higher order linear differential equations: Homogeneous and non-homogeneous linear equations of order n with constants coefficients. Cauchy Euler equation. Method of variation of parameters. Application of higher order linear differential equations.
Multiple Integrals: Evaluation of double and triple integrals in Cartesian and polar coordinates.

Books Recommended:

- Dr. S.M.Yusuf, Calculus and analytical geometry
- Dr. S.M.Yusuf, Mathematical methods
- Schaum outline series, Differential equations.
- Dr. B.S.Grewall, Higher Engineering Mathematics.

